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Maximum Likelihood and Bayes Estimation

Estimation
Estimation is the inference of unknown quantities. Two cases are considered:

1. Quantity is fixed, but unknown — parameter estimation

2. Quantity is random and unknown — random variable estimator

Parameter Estimation
Consider a set of observations forming a vector

X = [x17x27“' 7:1;N]T

Assumption: The x; RVs come from a known density governed by unknown
(but fixed) parameter 6

Objective: Estimate . What optimality criteria should be used?
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Definition (Maximum Likelihood Estimation)

The maximum likelihood estimate of 6 is the value Oyr,(x) which makes the x
observations most likely

éML(X) = arggnax fxjo(x0)

Example
Let z; ~ N(u,0%). Given N observations, find the ML estimate of .
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9]

For i.i.d. samples

N
fxm(XLu) = Hf331|,u $Z|N

1 _(a=p)? ]
e 272 [Gaussian case|

1>

likelihood function
Thus the estimate of the mean it is set as
fi = argmas f, (x/1)

Interpretation: Set the distribution mean to the value that makes obtaining
the observed samples most likely.
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ML Estimation

Note: Maximizing fy|,(x|x) is equivalent to maximizing any monotonic
function of fy|,(x|). Choosing In(:)

N eew?
ln(fx|p(x|,u>) = In (H 26 552 )

i=1 2ro

)2

202

Mz

= —Nln( 2770
=1

N
= —Nln( 2770 Z 252
140

Taking the derivative and equating to O,

On(fulxlp) _ v Ny _
T =0

Yooa
= fi=— > x; =sample mean

1
N
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General Maximum Likelihood Result
General Statement: The ML estimate of 0 is

éML(X) = arggnax fxjo(x0)
Solution: The ML estimate of 0 is obtained as the solution to

0
Sple(xl) =0

=01
or

0
AR CE)

=0ML

> fxjo(x|0) is the likelihood function of ¢.

> éML is a RV since it is a function of the RVs z1,29,--- ,xN

Historical Note: ML estimation was pioneered by geneticist and statistician Sir
R. A. Fisher between 1912 and 1922
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Example
The time between customer arrivals at a bar is a RV with distribution

fr(T) = ae™"U(T)

Objective: Estimate the arrival rate o based on N measured arrival intervals
T17T27”' 7TN-
Assuming that the arrivals are independent,

N
f(T1>T27"' 7TN) - HfT(T'Z)
i=1

N
N —a > T;
= J[ae % =aPe El
=1
N
:>1H[f(T1,T2,-”,TN)] = [Nln(a)_O‘ZTZ]
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Taking the derivative and equating to 0,

o N
—In[f(T1,T: T = —[NI — T;
50 n[f (11,1, Tn)] 8a[ n(a) Oé; ]
N N
= ——YT;=0
@ im
Solving for a gives the ML estimate
4 1 1
OML = TSN
NZ T T

Result: The ML estimate of arival rate for exponentially distributed samples is
the reciprocal of the sample mean arrival
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Properties of Estimates

Since Ay is a function of RVs x1,T9, -+, TN, estimates areRVs and we can
state the following properties:

» An estimate éN is unbiased if
E{dx} =0  bias= E{dy)} 0
> éN is consistent (converges in probability) if

lim Pr{|fy — =1 for arbi
i r{|0n — 0| <€} or arbitrary €

> éN is efficient in comparison to other estimators if

A A

var () < var(fother)

Note: If éN is unbiased and efficient with respect to éN—l for all N (i.e.,
var(fy) converges to 0), then 6 is a consistent estimate
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To prove the consistent estimate result, note that by the Tchebycheff
inequality
var(6y)

Pr{|0y — 0] > ¢} < 2

If var(On) < var(Ay_1), the above gives
A}gnooPr{\@N —0]>¢e}=0

or
lim Pr{|fy — =1
i r{|0n — 0| < €}
That is, it converges in probability, or is consistent
QED
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Example
Let {x;} be WSS with uncorrelated samples. Is the sample mean a consistent
estimator for this sequence?

Step 1: Consider the bias

| N
E{an} = E{szﬁz}

Result: [iy is unbiased

Step 2: Consider the variance

var(fiy) = E{ (i — 1)’}
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var(iiy) = E{(i—p)’}

1 X 1
= 32 ZlE{(IUZ — )} + mE(cross terms)
- =0
1 X 5 1 ) o2
= ﬁ;E{m—u) b= (Vo) =+

A

Result: iy is unbiased and var(fiy) < var(fn—_1) = fin is consistent
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Theorem (Cramer-Rao Bound (1945, 1946))

If § is an unbiased estimate of 0, then

2
var({) > (E{ (gl })

2

var(d) > (—E{aagzln[fxw(X\@)]})_l

where it is assumed

-1

or equivalently

%) 0? ,
%fx|9(x|0) and @fxw(}d&) exist

Note: If any estimate satisfies the bound with equality, it is an efficient
(minimum variance) estimate
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Proof:

Since 0 is unbiased
B{)—0}= [ (0-0)fao(xl6)dx =
Taking the derivative
0 [>® A
ae/ (0—6) fyo(x]0)dx = 0
0 fx19(x|0
- / Fio(x10) dx+/ M

—1

0—0)dx = 0

:>/OO afx|t9(x|9) é

e 0-0dx = 1 (x)
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Note the following equality

Oln| fy9(x|0 0 fxi0(x|0
[faz( | )]fxw(xw): f |g(9 10)

Using this in (x)

o0 8fx|6’(X’0) A B
/_OOT(H—Q)OZX =1
oo Jln «lo(x]0 .
:>/—oo[jgg<|)]fx|0(x|0)(9—9)dx = 1

This can be equivalently expressed as

(/_OO (wwxw (x[0) ) (\/Fx10(x10)(0—0)) dx>2 =1
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Definition (Cauchy—Schwarz Inequality (1821 disc.; 1859 cont.))

Cauchy-Schwarz's inequality states (for square—integrable complex—valued

functions),
[ @a)as| < [17@)P - [ gt d

with equality only if f(z)=k-g(z), where k is a constant
Thus

(/OO (ah“[fxﬂ"'@¢ Fxjp(x10) ) (\/Fx0(x10)(0—0)) dx>2 _1

N (/_Z (W)zfxw<x|mdx) (/7 007 fqpxi0)x) = 1
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Note o )
/_00(0 — 9)2fx|9(x|0)dx = var(f) (%)

and

I ((‘MW(xW)Q fuo(xl)ix = B { <3ln(f,§z(x!0))>2} -

00
Thus using (*) and (xx) in

(7 (P i) (-0 o) >

E{ (aln(f’;Z(Xw)))QHl

2 (1)) = KO0

= var(é) >

with equality iff

QED
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Thus the bound in met iff
0 ~
(g (x10)) = k(0 - 0)

Let 6 = éML in the above

S| =kO-0

=0ML 0=0n11,

=0 by ML criteria

Therefore, the RHS must equal zero, or

Result: If an efficient estimate (one that satisfies the bound with equality)
exists, then it is the ML estimate

Note: If an efficient estimator doesn't exist, then we don’t know how good
QML is
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